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Abstract. In this paper second-order equations are derived for the turbulent velocity-field 
correlation and propagator functions. It is argued that the concept of the propagator may 
be more fully exploited as the relationship between eddies at successive times, than as the 
relationship between the velocity and the arbitrary stirring forces. The resulting equations 
differ from the direct-interaction approximation of Kraichnan by the presence of addi- 
tional diffusive-type terms in the equation for the propagator. A generalisation of the 
diagram technique due to Wyld is used to analyse the approximation procedure to fourth 
order. It is shown that many higher-order terms in the perturbation series are represented 
in the truncated equations. 

As a first step in assessing these equations, steady-state forms are obtained, on the 
assumption of exponential time dependences. The resulting equation for the effective 
viscosity is found to be similar to a pqevious theory of McComb. But there are important 
differences: the integrand i s  not antisymmetric and there is no cut-off in wavenumber. The 
time-independent form of the theory is found to be compatible with the Kolmogoroff 
distribution. It is concluded that this is sufficiently encouraging to justify a numerical study 
of the time-dependent equations. 

1. Introduction 

Recent attempts to develop a fundamental theory of turbulence may be divided into 
two types of approach. The first of these was initiated by Kraichnan (1959, and many 
other papers: see the book by Leslie 1973 for a full account), who introduced a new 
perturbation method for solving the Navier-Stokes equations. Kraichnan derived a 
set of coupled integral equations, for the velocity correlation and response functions, 
which took into account the collective nature of turbulent motion. This kind of direct 
manipulation of the equations of motion has also been the basis of subsequent 
theories. including Wyld (1961), Lee (1965), Pythian (1969) and Nakano (1972). 

The second approach stems from the work of Hopf (1952), who used the equation 
of motion to derive an analogue of the Liouville equation, for the distribution function 
of the fluctuating velocities. Edwards (1964) took the Liouville equation as a starting 
point and obtained closed equations for the energy spectrum and dynamical friction 
(or effective viscosity). With appropriate assumptions about the form of time depen- 
dences, these results were found to be compatible with those of Kraichnan. Examples 
of further work in this area include papers by Herring (1965), Edwards and McComb 
(1969) and Balescu and Senatorski (1970). 

The two types of theory have in common the development of modified pertur- 
bation methods to handle what is a strongly non-linear problem. Another common 
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feature is the recognition that a second function, be it response function, velocity 
propagator or effective viscosity, must be introduced in order to obtain a closed set of 
equations for the energy spectrum. Variations between theories tend to be in terms of 
the way this second function is introduced (and in the final form of its governing 
equations) as all approaches seem to lead to similar equations for the energy spec- 
trum. 

So far the expansion methods that have been used are not well justified or 
understood. Many questions remain unanswered about convergence, uniqueness of 
solutions and the importance of terms which have been neglected. Given the very 
complicated nature of the higher-order terms, this is not surprising; and at present the 
main emphasis is on finding tractable forms which may be tested against experimental 
results. The accepted test seems to be that the theory in question should yield the well 
known distribution which was predicted on dimensional grounds by Kolmogoroff (see 
e.g. Leslie 1973). 

Of the theories mentioned, only two yield the Kolmogoroff inertial-range spec- 
trum as a solution. The first of these was due to Kraichnan (1965), who extended his 
direct-interaction approximation to a mixed Eulerian-Lagrangian frame of reference. 
In the second, Edwards and McComb (1969) chose the response function such that 
the turbulent entropy (defined as information content) was maximised. Both these 
theories are very complicated and it is also fair to say that both possess some 
unsatisfactory features. 

In later work, Kraichnan (1971) has developed a new approach in which some of 
the desirable features of his 1965 theory are retained in a purely Eulerian framework. 
The origins of this work lie in an ‘almost-Markoffian’ eqmtion, derived from a model 
representation based on the work by Pythian (1969). The resulting ‘test-field’ model 
yields the Kolmogoroff distribution, but does not involve the level of complication 
found in the earlier Lagrangian-type theory. Interestingly, the final equations are very 
close to those of Edwards (1964) but slight differences in the inertial-transfer opera- 
tors are sufficient to remove the well known divergence from the equation for the 
response function. 

A different approach has been followed in more recent papers (McComb 1974, 
1976), where we have shown that the energy equation due to Edwards (1964) may be 
re-interpreted in terms of a Heisenberg-type effective viscosity. Symmetries in the 
nonlinear kernels were exploited to obtain a response integral, which did not diverge 
at the origin and hence was compatible with the Kolmogoroff distribution. Although 
this improved behaviour was due to the presence of additional diffusive-type terms in 
the kernel, a cut-off in wavenumber was also involved. This work was restricted to 
steady, isotropic turbulence. 

In this paper we present a new theory of time-dependent isotropic turbulence in an 
incompressible fluid. Our approach belongs to the first type mentioned at the begin- 
ning of this section, in that we manipulate the Navier-Stokes equation directly. The 
additional quantity needed for closure is introduced formally as the velocity-field 
propagator which relates the velocity of a given eddy to its values at successive times. 
The equation of motion for this quantity is obtained from a generalisation of the 
equation for the velocity covariance. In this respect the basic idea is similar to our 
recent steady-state theory (McComb 1974, 1976), where the response function was 
determined from the energy balance in wavenumber space. But it will be seen that a 
completely different analytical path is followed and that the symmetry arguments (and 
associated wavenumber cut-offs) used previously, do not occur in the present theory. 
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It will also be seen that (unlike some other approaches) we do not introduce a 
formal relationship between the velocity field and an arbitrary stirring force. This 
does not rule out such forces. Clearly one may postulate that random stirring forces 
give rise to an energy input which will sustain the turbulence (Edwards and McComb 
1969). Thus there is no inconsistency in (for example) considering the turbulent field 
to be stationary and, in fact, we shall find it convenient to do so. 

2. The basic equations 

In this section we summarise those aspects of current methods of treating the Navier- 
Stokes equation which will be needed in this paper. We begin by considering an 
incompressible fluid in a cubical box of side L. At a later stage we take the limit L + CO 

(which is required for rigorous isotropy) and summations are replaced by integrals. If 
we let the velocity field be U, (x, t )  then the Fourier components of this are defined by 

u,(x, t )=CU,(k,  t)eikr.  
k 

For an incompressible fluid, the continuity equation becomes 

k, U, (k, t )  = 0 

and the Navier-Stokes equation may be written 

where the inertial-transfer operator M , ; P ~ ( ~ )  is defined by 

(k = Si(k@,, (k + k@,@ (k 1) 
and 

~ a p  (k) = ~ a o  - kakp Ik I-* 
(e.g. see the book by Leslie 1973). 

The pair correlation of velocities may be defined, thus: 

(&)3(Ua(k, t)U@(-k, t ’ )>=  Q,s(k, t - t ’ )  (2.6) 

where ( ) means average value, and the turbulence is assumed to be stationary in time. 
If the turbulence is isotropic we may further write 

Qag (k, t - t‘) = Drr~ (k )Q(k ,  - t ’ ) .  (2.7) 

As k,D,@(k) = 0, the continuity equation will be satisfied by (2.7), for an arbitrary 
scalar function Q(k ,  t - t ’ ) ,  which depends only on the magnitude of the wavevector k. 

In order to obtain an iterative solution of equation (2.3) we make the expansion 

U, (k, r )  = U;’’ (k ,  t )  + A U?’ (k, t )  + A ’U&’’ (k, t )  + O(A ’). (2.8) 
Here A is an ordering parameter and will be put equal to unity at the end of the 
calculation. Superficially A is of order Maoy(k) as, when any coefficient in (2.8) is 
expressed wholly in terms of the U‘’), then the associated power of A is equal to the 
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number of inertial-transfer operators occurring in the expression. The zero-order 
velocity field U") is taken to be prescribed and to have Gaussian statistics. While it is 
possible to add a stirring force to the right-hand side of (2.3) to sustain the turbulence, 
and then to relate U"' to the stirring force, we shall not make use of that approach 
here. 

The iteration is based on the inversion of the linear operator on the right-hand side 
of (2.3) so it is convenient to introduce the zero-order propagator Hfi (k, t - t f ) ,  thus: 

and hence 

(2.10) 

Then, substituting the expansion (2.8) into equation (2.3) and associating a factor A 
with Ma,&), we obtain 

The coefficients in (2.8) are obtained by equating powers of A, and using (2.10) to 
obtain : 

And, by repeated substitution: 

(2.13) 

Higher-order terms are more conveniently expressed in terms of diagrams (Wyld 
1961, Lee 1965). We will make use of this technique in a later section. 
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3. The velocity-field propagator 

The idea that closure of the main Navier-Stokes hierarchy should be in terms of the 
velocity correlation and propagator functions is already present in the work of Wyld 
(1961) and Lee (1965). These authors have also defined the exact propagator in terms 
of an expansion for the pair correlation rather than (say) for the turbulent velocity 
field (e.g. Nakano 1972). However, their formulation of the theory is aimed at a 
relationship between the exact turbulent velocity and the arbitrary stirring forces at all 
times. To us, this does not seem to fully exploit the notion of a propagator, which 
relates the velocity field (of a particular eddy) to itself at successive times. Also, we 
share some of the reservations expressed by Balescu and Senatorski (1970) about 
giving the arbitrary stirring forces such a prominent role in the theory. 

In the present paper we introduce the propagator formally in terms of the time 
dependence of the velocity field. We then derive its equation of motion from the 
Navier-Stokes equation. This procedure is closer in spirit to the approach of Kraich- 
nan (although the definition of the propagator or response function is quite different) 
than to that of Wyld, who classified diagrams in the perturbation series into pro- 
pagator-like and vertex-like terms, on a topological basis. 

Some preliminary discussion should help to make our approach clear, so let us 
consider how the concept of an exact propagator arises. The solution of equation (2.3) 
may be written, using (2.9) and (2.10), as 

The role of H(O) as a zero-order propagator is clear. It satisfies 

U:’(&, t ) =  H:?(k, t - .s)U:’(k,  S )  

H g  (k, r - s)Hbog) (k, s - t ’ )  = H:: (k, t - t’) 

El:?@; t, t ) =  1. (3.3) 

(3.2) 

and has the properties 

Now consider equation (3.1) with to taken sufficiently far in the past for the first 

~,(k, t > =  J‘ dsH??(k, t - s )CMuB,(k)UB(j ,S)Uy(k+j ,  s). 

term on the right-hand side to be neglected, thus: 

(3.4) 

Clearly this is the exact solution for Ua(k, t )  but the unknown interaction term makes 
it of little use. The introduction of an exact propagator H is equivalent to saying that, 
by analogy with (3.2) and (3.3), equation (3.4) can be approximated by 

-a3 I 

Ua(k, t )=Hau(k,  t - s )Uu(k ,  S )  (3.5)t 

t It should be noted that H, as defined by equation (3.5), is statistically sharp. Thus H may be treated as 
independent of any particular realisation of the velocity field. The use of (3.5) may be regarded as 
somewhat phenomenological but we would argue that the term ‘exact propagator’ is not inappropriate 
because of the dependence of H on the moments of the turbulent velocity field. 
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where 

Ha& f - s)H,B (k, s - t’) = Ha&, t - t’) 

Ha&; f, t ) =  1. 

Thus, by making the usual analogy between the behaviour of the linear and non-linear 
operators, we are essentially forcing equation (3.4) into the form of (3.5). The 
implications of this step are clearer if we multiply both sides of (3.4) by Uae(-k, f’), 
and average, to obtain 

In general we would not expect this to reduce to the simple form appropriate to 
equation (3.5) but to something rather more complicated like (say) 

where A and B are (at the very least) functionals of the pair correlation Q‘s. Indeed, 
existing energy-balance equations (e.g. Kraichnan 1959, Edwards 1964) strongly 
suggest that (3.8) represents the minimum level of complexity needed to approximate 
equation (3.7) for the pair correlation. Hence, in order to obtain a propagator as 
defined by equation (3.5), one must either neglect the second (diffusive-type) term on 
the right of (3.8) or alternatively force (3.8) into the appropriate form in some way. 

For example, temporarily suppressing tensor indices, we might write equation 
(3.8) as 

Q(k, t-t’>= ( A @ ,  t - s ) + C  Q-’(k, s - f ‘ )B(k  + j ,  t - s ) Q o ,  s - f ’ ) )Q(k ,  s - t ’ )  (3.9) 
I 

which has the required form. Of course this is a clumsy manoeuvre and is only 
introduced to make our point; that diffusive-type terms can be retained in the 
equation for the propagator. In practice it would not be very helpful. 

We conclude this section by noting that in most of the theories mentioned earlier, 
the equation for the response function or propagator only involves the first type of 
term on the right-hand side of equation (3.8). A particularly interesting example is 
provided by the work of Nakano (1972) who used an iterative technique to reduce 
equation (3.5) to (3.4), with H in the form of an expansion. Nakano divided the 
diagrammatic representation of H into two classes on a topological basis and neglec- 
ted one class of terms in order to obtain a series that could be summed. But the terms 
which were neglected are just those which would contribute to a diffusive-type second 
term as in (3.8). 

Exceptions to the above are the entropy method (Edwards and McComb 1969) 
and the local energy transfer theory (McComb 1971, 1976). In both of these, 
diff usive-type terms arise naturally in the equation for the response (or strictly, the 
effective viscosity). However, both theories are for steady turbulence, and there is an 
underlying assumption of exponential time dependence. Thus the problems inherent 
in the inversion of the pair-correlation (e.g. as in (3.9)) are smoothed out. In the next 
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section we shall show that it is also possible to cope with this problem in the general 
time-dependent case. 

4. Equations for the correlation and propagator functions 

We begin by deriving a generalised equation for the pair correlation. Using the 
definition of the exact propagator, equation ( 3 3 ,  we write the Navier-Stokes equa- 
tion as 

(:+uk2)Ha,(k, t - s ) U , ( k , s ) = A  C M , B , ( ~ ) U B ( ~ ,  t)U,(k+j,  t )  (4.1) 
i 

where A is the ordering parameter. Now multiply both sides of (4.1) by 

U,,(-k, t ' )  = Ha& s' - t')U,,(-k, s') (4.2) 

and average, to obtain 

= A 1 MaBy(k)Ha','(k, S' -  f ' ) (  U6G9 f)Uy(k + j ,  f)U,'(-k, S)). (4.3) 
i 

In order to expand the right-hand side of (4.3), we use (2.8) for the velocity field 
and, for the propagator, we introduce the corresponding expansion 

&(k, f - S ) = H $ ! ( k ,  t -s)+A2HL$(k,  t -S)+O(A4).  (4.4) 

H@(k,  t - s ) = D ~ B ( k ) H ( k ,  f - s )  (4.5) 

Also it is convenient at this stage to note that isotropy implies the form 

where D,,(k) is given by equation (2.5). As in (2.7) for O&(k, t -t ' ) ,  the projection 
operator ensures that the incompressibility condition is satisfied for an arbitrary 
function H ( k ,  t - s), which depends only on the scalar magnitude of k. 

Substituting from (2.8) and (4.4), equation (4.3) becomes 

(:+ uk2)H,,(k, t -s)(U,(k,  s)U,,(-k, s'))H,,,(k, s ' - t ' )  

= A h&,(k)[&o),' (k, s' - t ' )  + A 2 Ha,,, (2) (k, S'  - t ' )  + O(A ')] 
i 

x [ (Upo ' ,  t>Ut"'(k + j ,  t)Ubq'(-k, 8 ' ) )  

+ A ( u ~ ) u ,  t ) x  ~ F ) ( k + j ,  t)Ub"(-k, s f ) )  

+ 2A( U:' U, t)U?'(k +I, t)Ubq'(-k, s')) + O(A2)]. (4.6) 
We shall only work to second order in this analysis but, in the next section, diagram- 
matic methods will be used to investigate the higher-order structure. In this connec- 
tion it will be important to note that the term in will also contribute to the fourth 
order. 



620 W D McComb 

Substituting from (2.12) for U(1) we then obtain 

(;+vk2)Hau(k, r -s)(U,(k, s)U,,(-k, s’))H,&, s ’ - t )  

= 1 Maay(k)H&obr (k, S I -  t’)( A (U:) ( j ,  t)UF’ (k + j ,  t)Ubg‘(-k, 8 ’ ) )  
i 

1‘ 

+ h 2 C  J dsHbo.b(k,sf-s)M,B,,,(-k) 

x ( ~ $ ” ( j ,  t )Uv)  (k + j ,  t ) ~ $ ) ( j ’ ,  s ) ~ y ) ( - k  + j ’ ,  s)) 

f -m 

+ 2 A 2 1  I* dsH“’ BP ( i t  t - s ) M p B ’ v ’ ( j )  
f -m 

x ( ~ p ( j ’ ,  s ) ~ $ ) ( j + j ‘ ,  s ) ~ ~ ) ( k  + j ,  t )v$) ( -k ,  sf))) +o(A~) .  (4.7) 

The U(’) are taken to have Gaussian statistics, so all odd-order moments vanish. 
The fourth-order moment may be evaluated in terms of the second-order moments, in 
the usual way, and (4.7) reduces to 

(:+ vk2)H,,(k, t-s)Q,(k,  s-s’)H,,,,(k, s f - t ’ )  

I ’  

= A ’  - 1 2 ~ , ~ , ( k ) ~ , , , , ~ ( - k )  J dsH:ob,(k, s ’ - t ’ )H?i(k ,  s’ -s )  (3 ( -m 

X Q:jf(j, t - s ) Q g , ( k + j ,  t - 8 )  

+4~,~,.(k)~,~,,,(j) J‘ dsH$b,(k, s ’ - t ’ ) ~ : ; ( j ,  t - s )  
-m 

x a$b.(k, s - s ’ ) ~ g , ( k + j ,  s - s ) ) + ~ ( ~ 4 ) .  (4.8) 

At this stage we put A = 1 and replace the zero-order correlations and propagators 
by their exact forms on the right-hand side of equation (4.8). We shall show in the 
next section that this corresponds to summing certain classes of terms in the pertur- 
bation series to all orders. We also express the correlation and response tensors in 
terms of the appropriate scalar functions using (2.7) and (4.15). Then, making the 
transition to the infinite system, and using the property of the projection operators 
that Dpp,(k)Da,B(k) = DUB@),  we obtain from (4.8) 

(:+ vk2)D,, ,(k)H(k, t - s ) Q ( k ,  s - s ’ )H(k ,  s ’ - t ’ )  

= j d3i (2~,~~(k)~,~,,,(-k)~,,,(k)~~~,(j)~,,(k +i) 

dsH(k,s’-t’)H(i, t - s ) Q ( k , s - s ‘ ) Q ( l k + i l ,  t - s ) ) .  (4.9) 
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Finally, taking (Y =a’, this equation may be written with the right-hand side in a 
familiar form, as 

($+ v k 2 ) H ( k ,  t - s ) Q ( k ,  s - s ’ )H(k ,  s’- t’) 

f‘ =I d’jLkj(I_drH(k,f’-s)Q(i, t - s ) Q ( l k + j l , f - s )  

- dsH(k,s’-t’)H(i, t - s ) Q ( k ,  s - s ’ ) Q ( l k + j l ,  f - s ) )  (4.10) 

where we have contracted the time arguments in the first term on the right to 
eliminate one of the propagators; and Lkj is given by 

L 
(4.11) 

p being the cosine of the angle between k and 1. From equation (4.10) we may obtain 
equations for the propagator and correlation functions. 

( k 2 j 2  +2k2j2p2 + k3jp  + kj3p)(l - p 2 )  

k 2  + 2kj + j 2  
Lkj = 

4.1.  The equation for the propagator 

We obtain this by evaluating the equation for the pair correlation on the time 
diagonal. Putting s = s’ in both sides of equation (4.10) yields: 

-+ vk H ( k ,  t - s )H(k ,  s - t ’ )Q(k ,  0 )  

t’ 

( i t  2, 

= d’j Lki I-, ds H ( k ,  t’ - s)Q(j, t -s)Q(jk + j l ,  t - s) 

- ds H ( k ,  s - t ’ )H(k,  t - s ) Q ( k ,  O)Q(lk + j l ,  t -s ) .  (4.12) 

Now we may contract time arguments on the left-hand side, according to (3.6), and 
divide across by Q ( k ,  0). Writing 

L 

where E ( k )  is the steady-state energy spectrum we obtain 

($+ dC2)H(k, t - f’) 

t’ =( d’jLkj(q;’ i _ d s H ( k ,  t ’ - s ) Q ( i , t - s ) Q ( / k + j / ,  t - s )  

ds H (k ,  s - t ’)H(i, t - s )Q (I& + j I ,  t - s)) . 

(4.13) 

(4.14) 

This is the required equation for the propagator. At this stage, perhaps the most 
interesting comparison is with the original direct-interaction equation for the response 
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function (Kraichnan 1959: or see equation (6.22) in the book by Leslie 1973). 
Re-arranging (4.14) in the form 

(;+ vk2)H(k,  t - t ’ )  

(4.15) 

which may be compared with Kraichnan’s equation for the response function G(k,  t - 
t ’ ) ,  which is 

(;+ v k 2 )  G(k,  t - t’) = - d3j Lkj ds G(i, t - s)Q(lk + j l ,  f - s )G(k ,  s - t ’ ) ,  5 J:- 
when rewritten in our present notation. Clearly equation (4.15) differs only from 
Kraichnan’s result by the presence of the second, diffusive-type, term on the right- 
hand side. It will be seen later that this term prevents the well known divergence at 
k = 0, when the Kolmogoroff distributions are substituted for 0 and H. 

4.2. The equation for the correlation function 

In this case, we simply make use of the property (3.5) to contract time arguments on 
both sides of equation (4.10), which then reduces to 

Again, the immediate comparison is with Kraichnan’s energy-balance equation. 
Referring to equation (6.21) of Leslie’s book, we see that (notational differences 
aside) the two equations are identical. This is not surprising as, to second order, there 
is no essential difference between the two derivations. 

We shall return to a detailed consideration of equations (4.14) and (4.16) at a later 
stage. In the next section we investigate the nature of the approximations made, by 
considering a diagrammatic analysis of the perturbation series. 

5. Diagrammatic representation of the perturbation series 

5.1. The equation for the pair-correlation 

A general analysis of the perturbation series, using graphical methods, has been given 
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by Wyld (1961), who considered a one-dimensional form of the equation of motion. 
The series expansion for the velocity field (2.8) was substituted directly into the 
definition of the pair correlation (2.6) and the zero-order propagator used to relate the 
zero-order velocity to an arbitrary stirring force. Generalised diagram parts were 
identified as propagator-like or vertex-like, in terms of their mode of connection to 
other diagram parts. Both vertex and line renormalisation were employed to reduce 
the set of diagrams. It was found that one class of diagrams could be summed exactly. 
This provided a relationship between the pair correlation of velocities and the auto- 
correlation of the stirring forces, at all times. The second class could be expressed as a 
series of irreducible diagrams. Similar expansions were obtained for the exact pro- 
pagator and vertex functions. A non-trivial generalisation of this work to three- 
dimensional turbulence was given by Lee (1965), who also considered the hydro- 
magnetic case. 

The formalism of Wyld is attractive, in that all diagrams are accounted for, and the 
complexity of the turbulence problem is reduced in an impressive way. However, the 
final equations are still very complicated and it is necessary to make some further 
reduction to obtain tractable forms. For example, the direct-interaction approxima- 
tion is recovered by discarding vertex corrections, summing a subset of diagrams and 
truncating at second order (Wyld 1961). Also, as we pointed out earlier, this formal- 
ism is influenced by the earlier work of Kraichnan (1959) and is biased towards the 
concept of the stirring forces maintaining the turbulence at all times. This means that 
Wyld’s particular prescription for classifying and summing diagrams, is not intrinsic- 
ally suited to our present approach. 

Thus our object in this section is not to try to develop an analysis like Wyld’s, in 
which all loose ends are tied up. Rather, we simply wish to show: (i) which classes of 
diagrams are retained in our approximation; and (ii) that our method of obtaining the 
propagator corresponds to a plausible method of classifying and summing diagrams. 
To this end, we will introduce diagrams which are a generalisation of those due to 
Wyld. The analysis will be simplified by neglecting vertex corrections. All diagrams 
which contain a generalised vertex part will be omitted. This point will be explained 
more fully at later stage. 

We also have the problem that we are treating the right-hand side of the energy 
equation, which means that each term contains three velocity coefficients, rather than 
two, as in Wyld’s direct expansion for the pair correlation. It will be seen that we can 
deal with this by replacing two of the coefficients in each term by a term involving one 
coefficient of higher degree. 

To set up the diagram method we first re-derive the energy equation, using a 
crudely symbolic notation. Wavenumber and time arguments are suppressed, along 
with tensor indices. Only the degree and the ordering of coefficients will be 
significant. 

We start by writing equation (2.3) as 

(:+ vk2)  U = AMUU 

and the perturbation expansion (2.8) as 
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The coefficients, as given by (2.12), now become 

U1 = HOMUO U0 

U2 = 2HoMUo U1 

U3 = 2HoMUo Uz + HOMUi U1 

U 4  = 2HOM( U3 U1 Uz) 
(5.3) 

Equation (5.2) is used to expand the right-hand side of (5.1) to obtain 

(:+ vkZ)  U = M[A U0 U0 + 2A U0 Vi + 3A U O ~ ,  + A  U1 

+ 2A U0 U3 + 2A U1 + o(A ’)I (5.4) 

(5 .5 )  

which is then multiplied on both sides by 

HU = [Ho + A  ’Hz + O(A4)][ Uo+AUi +A2Uz + A  3U3 + O(A4)] 

and the result averaged, to obtain 

= M[2A ’( UoUlHoUo) + A ’( UoUoHoUi) + A ‘(2( UoU3Ho Uo) 

+ 2( U1 UzHoUo) + 2( UoUzHoUi) + (U1 UiHoUi) + 2(UoUiHo Ud 

+ 2( Vo UoHo U3> + 2( Uo UiHz Uo) + ( Uo UoHz Vi>) + O(A “11. (5.6) 
The exact propagator H may be eliminated from the left-hand side, by contracting 
time arguments. Similarly, the zero-order internal propagator may be eliminated 
from the right-hand side by contraction with an appropriate Vo at this, or a later stage. 
By using (5.3) to substitute for velocity products like UOU,, etc, and putting A = 1, 
equation (5.6) becomes: 

=(H~’(U*Uo~+Hol(VIU~)+Hol(U~Vo~+Hol(U~U1~ 
+ Hi’ ( Uz U,) + Hol  ( U1 U3) + H 0 ( UzHz Uo) + Hi1 ( U1 H2 Vi)). (5.7) 

We are now in a position to introduce a set of diagrams corresponding to the terms 
of the perturbation series, and hence to the right-hand side of equation (5.7). Let us 
represent the elements of the series in the following way: 

full straight line UO 

broken straight line c-, HO 

point (vertex) c-, M. 

Then the perturbation series may be represented by diagrams as in figure 1. It should 
be noted that three lines meet at each vertex and that there is always wavenumber 
conservation at  a vertex. 
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In order to calculate the velocity correlations, we place two diagrams, with their 
‘branches’ facing each other, and join up emergent full lines in all possible ways. A 
‘cross’ at the junction point indicates that two velocities are correlated. The cor- 
responding numerical factors are obtained by multiplying the product of the factors, as 
given in figure 1, by the number of different ways the full lines can be joined up to 
form duplicate diagrams. Diagrams which correspond to a uniform translation of the 
system are omitted. 

Figure 1. Diagrams corresponding to the terms of the perturbation series: equation (5.3). 

A simple example will make all this clear. Let us consider the direct calculation of 
the pair correlation (as originally made by Wyld 1961) to second order: this is a 
particularly convenient example, as we shall need this result later. We have 

Q (k = Qo(k 1 + ( u o u z )  + (U1 Vi> + ( u z  uo) + 00 ‘). ( 5 . 8 )  
Joining up diagrams for ( UoV2) etc, as explained above, results in the diagrams shown 
in figure 2. 

Figure 2. Expansion of the pair correlation to second order. 

The diagrams corresponding to the right-hand side of equation (5.7) may be 
obtained in the same way. The presence of the factor Hi’ in (5.7) does not present 
any problems. This acts from the right and cancels the emergent HO on the left of the 
diagram. We shall only work to fourth order, but it should be noted that the 
expansion of the propagator means that some fourth-order terms contain Hz. At this 
stage the diagrams corresponding to H2 are unknown. The simplest method of 
dealing with this is to introduce a symbol for Hz as a diagram part. This is then 
inserted in the second-order diagrams, in all permissible ways, to generate further 
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fourth-order diagrams. The set of diagrams thus obtained is shown in figure 3. As 
pointed out earlier, for simplicity we have omitted all diagrams which are reducible to 
a lower order by replacing a diagram part by a simple vertex. For the sake of 
completeness, the diagrams which have been left out are listed in figure 4. Thus 
figures 3 and 4, together, represent the 
right-hand side of the energy equation. 

1151,1161 

total set of diagrams, to fourth order, for the 

1121 

,,.a, 117,1118) 

Figure 3. Diagrams corresponding to the terms on the right-hand side of equation (5.7) 
for the pair correlation. (Diagrams (16) and (18) are generated, along with explicit forms 
for (15j and (17), when the appropriate second-order diagram parts are substituted for 
Hz.1 

Figure 4. Fourth-order diagrams corresponding to the vertex corrections which have been 
omitted from figure 3. 

5.2. The expansion for the propagator 

The diagrams corresponding to the perturbation series for the propagator are 
generated from the set given in figure 3. The rules for this may be deduced from a 
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comparison of the derivations of (4.14) and (4.16). We begin by noting that the 
diagrams of figure 3 may be divided into two classes. There are those in which a 
broken line emerges to the right (class I) and those in which there is an emergent full 
line to the right (class 11). The two classes have different properties and will be 
considered separately. 

Class I comprises diagrams (2) and (8)-(16). In deriving the equation of motion for 
the propagator, we divided across by a factor 4 k .  This must result in a factor of 4;' in 
class I diagrams, and a suitable generalisation has to be introduced. We may do this 
by associating the factor 4;' with a vertex, and representing the modified vertex by a 
circle. 

Class I1 diagrams are (l), (3)-(7) and (17)-(18). These present more of a problem. 
The emergent full line represents Qo(k, t - t ').  This must be replaced by a broken line 
(Ho) and the diagram multiplied by Qo(k;  0 ) = 4 ( 0 ) k .  Dividing across by 4 k ,  as in the 
class I diagrams, means that the diagram is multiplied by 4 ; 1 q ( ~ ) k .  Clearly 4;' should 
be expanded for consistency. 

We may deal with this slight awkwardness by anticipating the final result. When 
deriving equation (4.14) we divided across by q k  after zero-order correlations had 
been replaced by their exact forms. Thus in the second term on the right-hand side, 
the factor was 4k14k = 1. If we expand 4;' on the left of a given term and 4 k  on the 
right, there is a cancellation in the product at second order. Thus, in the diagrams, 
4k14k = 4&4(0)k = 1, to fourth order, and we do not have to consider a second-order 
term in an expansion of 4;'. 

With the above points in mind, we may write down a set of rules for obtaining the 
diagrams for H, from those in figure 3. These are as follows, 

( a )  Each class I diagram in figure 3 is multiplied by a factor 4 i 1 .  We associate this, 
for convenience, with the left-hand vertex. As a representation, we replace the vertex 
point by an open circle. 

( b )  In each class I1 diagram, the emergent full line on the right is replaced by a 
broken line. Each diagram is also multiplied by q & q ( ~ ) k  = 1, and no new represen- 
tation is needed. 

( c )  The set of diagrams which results from applying ( a )  and ( b )  to the diagrams of 
figure 3, represents the right-hand side of the equation of motion for H. We obtain an 
expansion for H itself by inverting the linear operator on the left-hand side of the 
equation. This corresponds to adding a broken line to the left of each diagram in 
figure 3. We take account of initial conditions by introducing a zero-order diagram to 
the expansion. 

( d )  Finally, carrying out the above procedure immediately yields the two second- 
order diagrams which represent H2. It is tidier to anticipate this result, and substitute 
for the generalised diagram part H2,  when modifying diagrams (15>-(18) of figure 3. 

Applying the above rules to figure 3, allows US to present the full expansion of H 
(to fourth order) in figure 5 .  Also, for completeness, the explicit forms for diagrams 
(15)-(18) of figure 3 can now be worked out and are given in figure 6 .  Thus the 
complete right-hand side of the energy equation is given (to fourth order) by figure 3 
and figure 6. 

5.3. Expansions for the correlation and propagator functions in terms of irreducible 
diagrams 

The derivation of equations (4.14) and (4.16) for the exact propagator and correlation 



628 W D McComb 

+2 - 

,,Y-"F\\, 11 8 .V,7.,\ '191 
+16- _ _ _ _  L,- ..__ 

Figure 5. Expansion for the exact propagator H to fourth order. 
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Figure 6. Diagrams (15)-(18) of figure 3,  after explicit second-order diagrams have been 
substituted for H2. 

functions, corresponds to a summation of all those terms which add up to produce the 
irreducible terms, with their zero-order elements replaced by the exact forms. The 
resulting expansion is then truncated at second order. 

This may be readily verified to fourth-order in the perturbation series. Let us 
introduce the following representation for the exact elements: 

boldfullline c, U 
bold broken line cf H. 

As before, a correlation is indicated by two full lines joined up at a 'cross'. The vertex 
representations (both with, and without, associated factor q i l )  are unaltered. 

Considering the propagator first, and referring to figure 5 ,  it is clear that the 
second-order diagrams are irreducible. Also it is readily seen that diagram (9) is the 
only irreducible fourth-order diagram. Thus the expansion for the exact propagator 
may be written as in figure 7. 

Similarly, for the pair correlation, reference to figures 3 and 6 shows that the 
analogous expansion for the right-hand side of equation (4.16) is as given in figure 8. 
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Figure 7. Diagrams corresponding to an integral equation for the exact propagator. 

Figure 8. Irreducible diagrams corresponding to the terms on the right-hand side of 
equation (5.7) for the pair correlation to fourth order. 

To find out which terms have been summed in our approximation procedures, we 
merely have to replace exact elements in the irreducible diagrams by their expansions. 
This will generate terms of all orders but we shall restrict our attention to fourth order. 
We may do this by substituting H = Ho +H2 and Q = Qo+ 02 in each element of 
figures 7 and 8, as appropriate. The propagator to second order may be obtained from 
the first three terms on the right-hand side in figure 5 and figure 2 may be used for 
0 = Qo+ 02. 

Beginning with the propagator, direct substitution in the diagrams of figure 7 
yields diagram numbers (1)-(5), (7)-(10) and (13)-(19) of figure 5.  

A similar direct substitution of second-order expansions in figure 8 generates 
diagrams (1)-(4), (6)-(10) and (12)-(18) of the energy equation. 

Thus our approximation omits diagrams (5) and (11) in the energy equation and 
diagrams (6), (11) and (12) in the equation for the propagator. Some general points 
may be made about this. Referring to figure 5 ,  for the propagator, we begin by noting 
that although diagrams (6) and (12) are said to be omitted, they seem to be identical to 
(16) and (18) which are said to be included. There is in fact a hidden difference in the 
way these diagrams arise. Diagrams (16) and (18) have an additional factor q&q(0)kr 
which of course equals unity and does not appear. Thus, while we have not shown 
those factors which cancel to unity, in order to keep the diagrams from becoming 
unduly cumbersome, we have thought it proper to preserve the correct assignment of 
terms from the analysis. 

Continuing to refer to figure 5 ,  we are left with the problem of why three diagrams 
are not included. This may be connected with the related problems of double- 
counting (Wyld 1961) and specially symmetric diagrams (Lee 1965). In particular, if 
we consider diagram (1 l ) ,  the prototype of this diagram (in the energy equation) was 
originally classed by Wyld with diagrams in which the emergent line to the right was a 
correlation (i.e. our class 11). If we were to follow this rule, then diagram (11) would 
have to be changed by omitting the factor qi '  and replacing the central correlation by 
a propagator. Then we could generate the modified diagram ( l l ) ,  along with the 
existing (12), by making the first second-order term in figure 7 more symmetric: i.e. by 
making the emergent left-hand propagator exact. 



630 W D McComb 

However, this sort of piecemeal modification would introduce difficulties else- 
where. Indeed it is the exact opposite of the step taken by Lee (1965) to avoid 
double-counting of certain diagrams. Thus it seems we are forced to accept this as an 
anomaly in our diagrammatic analysis. 

6. Comparison with previous work 

In 0 4, we compared our time-dependent equations for the propagator and correlation 
functions with those resulting from direct-interaction approximation (Kraichnan 
1959). We may also make a comparison with our earlier work on steady-state 
turbulence (McComb 1974, 1976) by assuming exponential time dependences. 

Let us assume that the propagator and correlation functions may be written as: 

exp[-wk(t- t ')]  t>t '  
0 tct' 

H(k ,  t - t ' )  = { 

As approximations, these forms are open to several criticisms. But they do offer a 
recognised prescription for making a connection between the original time-dependent 
theory of Kraichnan (1959) and the steady-state theory of Edwards (1964): a full 
discussion will be found in Leslie (1973). 

Beginning with the energy equation (4.16), we simply substitute (6.1) and (6.2), 
put t = t' and integrate over intermediate times to obtain: 

which is just the energy equation of Edwards (1964), and was the starting point for our 
previous work. 

Similarly, substituting (6.1) and (6.2) into equation (4.14) for H ( k ,  t - t') yields the 
following equation for W k :  

(6.4) 
Wk = v k 2 + J  d3j Lkfllk+fl(qk -%) 

q k  (Wj -k WIL+fI * 

This may be compared with our earlier equation for Wk in the form (McComb 1976): 

d3j LkflIk+fl(qk -41) 
Wk = vk2 + 

d a k  qk(Wk+Wi+WIk+fl)' 

These equations are very similar but two differences are immediately apparent. In 
(6.4) the wavenumber integration is not cut off at j = k and, also unlike the earlier 
form, Wk does not appear in the denominator. 

That these two differences should occur together is significant. In the earlier 
equation, the cut-off appeared because of the antisymmetry of the integrand, under 
interchange of k and j .  In (6.4), the absence of W k  from the denominator, means that 
there is no specific antisymmetry in the integrand of (6.4) and hence there would be no 
justification for a cut-off. 
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However, equation (6.4) does possess the dcxirable property that the integral 
converges when the Kolmagoroff forms for 4k and W k  are substituted as valid for all 
wavenumbers (e.g. see McComb 1976). It may readily be shown that this is due to 
cancellations at the singular points, j = 0 and Ik +]I = 0. This is important as it means 
the theory yields the Kolmogoroff distribution as a solution. 

Equations (6.3) and (6.4) could be solved together in the limiting case of infinite 
Reynolds number, to provide a theoretical value of the constant of proportionality in 
the Kolmogoroff spectrum (e.g. McComb 1976). Indeed a rough estimate suggests a 
value of about 1.8, which would be in better agreement with experiment than the 
result from the steady-state theory (McComb 1976). However, steady-state cal- 
culations of the Kolmogoroff constant are rather artificial and much more realistic 
tests are possible with the full time-dependent theory. In particular, we may calculate 
the evolution in time of the spectrum, from an arbitrary initial form. This will be the 
subject of further work so we shall not pursue the point here. 

7. Conclusions 

In this paper we have argued that the hierarchy of turbulent moment equations should 
be closed in terms of the relationship between eddies at different times. This is in 
contrast to other theories where prominence is given to the relationship between an 
eddy and the arbitrary stirring force. The perturbation method employed differs only 
slightly from that introduced by Kraichnan (1959), by the explicit (rather than impli- 
cit) presence of higher-order terms for the propagator. Thus it is not surprising that 
truncation at second order yields the direct-interaction energy equations. The 
important new feature is the presence of a diffusive-type correction term in the 
equation for the turbulent response. 

We regard the procedures in 9 4 as being the derivation of our equations. The 
diagrammatic analysis in § 5 was only undertaken in the spirit of establishing what was 
included in the theory and what was left out. It was not intended to provide a ‘cut and 
dried’ formulation. At this stage, we are forced to accept that some diagrams are 
apparently not included in the approximation. 

It scarcely needs to be said that the graphical analysis does not justify our 
approximation procedure in terms of its accuracy. We do not know the magnitude of 
those fourth-order terms which are excluded from the second-order renormalised 
terms. And, even if all reducible fourth-order diagrams had been accounted for, 
truncation at second order would still raise questions about the magnitude of fourth- 
and higher-order irreducible terms. In the present state of knowledge, the sheer 
complexity of the higher orders makes such questions imponderable. Thus the theory 
must still be regarded as rather tentative and we have the, not unfamiliar, situation 
that the final equations have to be judged by the results to which they lead. 

There is also the question of realisability. Early methods (e.g. cumulant discard; 
quasi-normality: see Leslie 1973) led to unphysical results like negative energy 
spectra. It has been argued by Kraichnan that the existence of a stochastic model 
representation, for which the direct-interaction approximation is exact, guarantees the 
realisability of the latter (and indeed that of some other theories: Leslie 1973). We do 
not have such a model representation for the present theory thus it must be 
emphasised that equations (4.14) and (4.16) may not lead to realisable forms in all 
circumstances. This situation is, of course, not unique. Previous theories which yield 
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the -$ solution (Kraichnan 1965, Edwards and McComb 1969) also lack a model 
representation. 

It is to be hoped that we will be able to answer some of these questions from a 
numerical study of the time-dependent equations. This will be the subject of future 
work. For the present, we would suggest that it is encouraging that the equations are 
realisable for the particular case of the Kolmogoroff spectrum. And, although in view 
of intermittency effects there is currently some doubt about the underlying validity of 
the Kolmogoroff distribution, we have pointed out previously (McComb 1974) that 
we take the pragmatic view that the - 5  law (or something very close to it) has been 
found experimentally. Thus whatever the true inertial-range form may turn out to be, 
the Kolmogoroff solution may be regarded as a reasonable practical test for any 
turbulence theory. Moreover, it is the rigorous infinite-Reynolds number solution for 
any closure (like the present one) in which intermittency effects are suppressed. 

Finally, we should not ignore the fact that our theory manages to suppress the 
divergence in the response integral within a purely Eulerian framework. It has 
previously been argued by Kraichnan (1 965) that a divergent response integral reflects 
a spurious interaction between the energy-containing and inertial ranges of 
wavenumber. He has shown that this interaction may be removed by requiring that 
his equations should be invariant under random Galilean transformations (Kraichnan 
1965, 197 1). Although this requirement is evidently of considerable physical 
significance and importance, it is not clear to me that it represents a fundamental 
requirement in the way the deterministic transformation does. Therefore it should 
perhaps be emphasised that the present theory does not invoke such a prescription nor 
do we claim that our equations are invariant to stochastic Galilean transformations. 
Possibly the ability to yield the Kolmogoroff distribution as a solution without satisfy- 
ing this particular invariance requirement may be one of the more interesting features 
of this work. 
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